|
In predicate logic universal instantiation〔Hurley〕〔Moore and Parker〕 (UI, also called universal specification or universal elimination, and sometimes confused with Dictum de omni) is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class. It is generally given as a quantification rule for the universal quantifier but it can also be encoded in an axiom. It is one of the basic principles used in quantification theory. Example: "All dogs are mammals. Fido is a dog. Therefore Fido is a mammal." In symbols the rule as an axiom schema is : for some term ''a'' and where is the result of substituting ''a'' for all occurrences of ''x'' in ''A''. And as a rule of inference it is from ⊢ ∀''x'' ''A'' infer ⊢ ''A''(''a''/''x''), with ''A''(''a''/''x'') the same as above. Irving Copi noted that universal instantiation "...follows from variants of rules for 'natural deduction', which were devised independently by Gerhard Gentzen and Stanisław Jaśkowski in 1934." 〔Copi, Irving M. (1979). ''Symbolic Logic'', 5th edition, Prentice Hall, Upper Saddle River, NJ〕 == Quine == Universal Instantiation and Existential generalization are two aspects of a single principle, for instead of saying that "∀''x'' ''x''=''x''" implies "Socrates=Socrates", we could as well say that the denial "Socrates≠Socrates"' implies "∃''x'' ''x''≠''x''". The principle embodied in these two operations is the link between quantifications and the singular statements that are related to them as instances. Yet it is a principle only by courtesy. It holds only in the case where a term names and, furthermore, occurs referentially.〔 Here: p.366.〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「universal instantiation」の詳細全文を読む スポンサード リンク
|